A penalized empirical likelihood method in high dimensions
نویسندگان
چکیده
منابع مشابه
On the Mahalanobis-distance based penalized empirical likelihood method in high dimensions
In this paper, we consider the penalized empirical likelihood (PEL) method of Bartolucci (2007) for inference on the population mean which is a modification of the standard empirical likelihood and employs a penalty based on the Mahalanobis-distance. We derive the asymptotic distributions of the PEL ratio statistic when the dimension of the observations increases with the sample size. Finite sa...
متن کاملPattern Classification Using a Penalized Likelihood Method
Penalized likelihood is a well-known theoretically justified approach that has recently attracted attention by the machine learning society. The objective function of the Penalized likelihood consists of the log likelihood of the data minus some term penalizing non-smooth solutions. Subsequently, maximizing this objective function would lead to some sort of trade-off between the faithfulness an...
متن کاملPenalized Empirical Likelihood and Growing Dimensional General Estimating Equations
When a parametric likelihood function is not specified for a model, estimating equations provide an instrument for statistical inference. Qin & Lawless (1994) illustrated that empirical likelihood makes optimal use of these equations in inferences for fixed (low) dimensional unknown parameters. In this paper, we study empirical likelihood for general estimating equations with growing (high) dim...
متن کاملMaximum likelihood, profile likelihood, and penalized likelihood: a primer.
The method of maximum likelihood is widely used in epidemiology, yet many epidemiologists receive little or no education in the conceptual underpinnings of the approach. Here we provide a primer on maximum likelihood and some important extensions which have proven useful in epidemiologic research, and which reveal connections between maximum likelihood and Bayesian methods. For a given data set...
متن کاملPenalized Least Squares and Penalized Likelihood
where pλ(·) is the penalty function. Best subset selection corresponds to pλ(t) = (λ/2)I(t 6= 0). If we take pλ(t) = λ|t|, then (1.2) becomes the Lasso problem (1.1). Setting pλ(t) = at + (1 − a)|t| with 0 ≤ a ≤ 1 results in the method of elastic net. With pλ(t) = |t| for some 0 < q ≤ 2, it is called bridge regression, which includes the ridge regression as a special case when q = 2. Some penal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2012
ISSN: 0090-5364
DOI: 10.1214/12-aos1040