A penalized empirical likelihood method in high dimensions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Mahalanobis-distance based penalized empirical likelihood method in high dimensions

In this paper, we consider the penalized empirical likelihood (PEL) method of Bartolucci (2007) for inference on the population mean which is a modification of the standard empirical likelihood and employs a penalty based on the Mahalanobis-distance. We derive the asymptotic distributions of the PEL ratio statistic when the dimension of the observations increases with the sample size. Finite sa...

متن کامل

Pattern Classification Using a Penalized Likelihood Method

Penalized likelihood is a well-known theoretically justified approach that has recently attracted attention by the machine learning society. The objective function of the Penalized likelihood consists of the log likelihood of the data minus some term penalizing non-smooth solutions. Subsequently, maximizing this objective function would lead to some sort of trade-off between the faithfulness an...

متن کامل

Penalized Empirical Likelihood and Growing Dimensional General Estimating Equations

When a parametric likelihood function is not specified for a model, estimating equations provide an instrument for statistical inference. Qin & Lawless (1994) illustrated that empirical likelihood makes optimal use of these equations in inferences for fixed (low) dimensional unknown parameters. In this paper, we study empirical likelihood for general estimating equations with growing (high) dim...

متن کامل

Maximum likelihood, profile likelihood, and penalized likelihood: a primer.

The method of maximum likelihood is widely used in epidemiology, yet many epidemiologists receive little or no education in the conceptual underpinnings of the approach. Here we provide a primer on maximum likelihood and some important extensions which have proven useful in epidemiologic research, and which reveal connections between maximum likelihood and Bayesian methods. For a given data set...

متن کامل

Penalized Least Squares and Penalized Likelihood

where pλ(·) is the penalty function. Best subset selection corresponds to pλ(t) = (λ/2)I(t 6= 0). If we take pλ(t) = λ|t|, then (1.2) becomes the Lasso problem (1.1). Setting pλ(t) = at + (1 − a)|t| with 0 ≤ a ≤ 1 results in the method of elastic net. With pλ(t) = |t| for some 0 < q ≤ 2, it is called bridge regression, which includes the ridge regression as a special case when q = 2. Some penal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2012

ISSN: 0090-5364

DOI: 10.1214/12-aos1040